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An analytical expression is obtained for the unsteady loading, acoustic mode
amplitude, and sound power output of a three-dimensional rectilinear cascade of
blades with "nite chord excited by a three dimensional gust. The e!ects of spanwise
wave number and cross-#ow are included so that the e!ect of blade sweep and
a gust with a spanwise variation can be considered. The results show that the e!ect
of the spanwise gust and blade sweep are very similar and reduce the e!ective
frequency of the incoming gust. The dominant e!ect is caused by the cut o! of
acoustic modes when the trace velocity of the gust along the blade span is subsonic.
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1. INTRODUCTION

The unsteady aerodynamics and aeroacoustics of ducted fans are an important
aspect of aeroengine design. For example, it is currently believed that the primary
source of fan tone noise is the result of the interaction between the rotor blade
wakes and downstream stator vanes. To address this problem, the response of a set
of uniformly spaced blades to an incoming vortical gust needs to be considered.
Many di!erent approaches have been used for this calculation but, as will
be discussed below, none give a complex analytical solution for a skewed gust
incident on a set of blades whose edge may be swept relative to the mean #ow
direction.

In the 1970s, several studies were carried out on two-dimensional sets of blades
which were represented by a cascade of #at plates at zero angle of attack [1}6].
Kaji and Okazaki [1] considered sound propagation upstream through a cascade
by solving for a distribution of dipole sources on the blade surfaces. In this
approach, the solution of the integral equation which relates the source strength to
the velocity disturbance was obtained using a collocation procedure. In
a subsequent paper, Kaji and Okazaki [2] used the same approach to evaluate the
sound generated by a rotor wake/stator interaction. Mani and Hovray [3] also
considered the sound transmission problem but used an approximate solution
based on the Wiener Hopf method. Although they gave an analytical result they
assumed that there was no interaction between the leading and trailing edges of the
blades. Koch [4] extended the Wiener Hopf analysis of Mani and Hovray [3] to
22-460X/99/410029#36 $30.00/0 ( 1999 Academic Press



30 S. A. L. GLEGG
blades with "nite chord and gave the transmission and re#ection coe$cient for
both upstream and downstream propagating acoustic waves.

Koch's method provides the analytical basis for the solution to the cascade
problem, but numerical solutions which are based on a similar approach to that of
Kaji and Okazaki [1] have proven to be more versatile [5, 6]. For example, Smith
[6] developed a code which gives the unsteady loading, the vortical "eld, and the
acoustic "eld upstream or downstream of a two-dimensional blade row for any type
of incoming gust. In recent years, these types of analyses have been extended to
loaded cascades with "nite thickness blades using numerical solutions to the Euler
equations (see references [7, 8] for reviews). All the methods are accurate and
computationally e$cient at low reduced frequencies but at high reduced
frequencies, when the gust wavelength is short compared to the blade chord these
methods are computationally time-consuming.

The recent development of very high by-pass aeroengines, which have blades
with much larger blade chords than in previous designs, has led to renewed interest
in analytical methods for the blade response function at high frequencies.
Analytical methods are important in this application because they can provide
high-frequency asymptotic solutions. In this regard, Peake [9] has extended Koch's
[4] analysis to give the unsteady loading on the blades caused by an incoming
vortical gust, and has also developed analytical tools [10, 11] which enable rapid
evaluation the functions required for the Wiener Hopf solution [3, 4].

All the studies described above only consider two-dimensional cascades and
a more accurate model of an aeroengine is given by a rotor and/or a stator in
a circular duct. As a "rst approximation, Atassi and Hamad [12] considered the
three-dimensional rectilinear cascade model described by Goldstein [13], subject to
a rotor wake or secondary #ow disturbance. The unsteady loading and sound
generation by a ducted rotor was considered by Namba [14]. The solution is
obtained by solving an integral equation for the velocity potential using
a collocation method and numerical results showed that three-dimensional e!ects
reduced the blade loading at low frequencies and non-zero spanwise wavenumbers
reduced the acoustic radiation at high frequencies. Kordama and Namba [15]
extended this analysis to a rotor with swept blades and Schulten [16] introduced
a alternative form for the Greens function in a circular duct to evaluate the acoustic
radiation from swept stator vanes downstream of a fan. See also recent work by
Chiang [17] and Golubev et al. [18].

The objective of this paper is to consider the acoustics of swept blade rows by
evaluating the response function for a three-dimensional incoming gust. An
analytical solution will be sought by considering a rectilinear cascade of #at plates
at zero angle of attack in a uniform cross-#ow (see Figure 1). The two-dimensional
models discussed above cannot be used for this problem because they do not
include the e!ect of the spanwise unsteady loading which dominates the ultimate
response. The only previous analytical study on this model is the approximate
analysis of Envia and Kerschen [19]. They considered a three-dimensional
rectilinear cascade of "nite span with the leading edge of the blades swept back in
the downstream direction. To simplify the analysis they assumed blades with
semi-in"nite chord and neglected coupling between the blades. The response
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function of each blade was assumed to be the same as the response of an iso-
lated airfoil of semi-in"nite extent. Consequently, they did not include any of the
blade gap e!ects which are important features of the two-dimensional cascade
models. This paper will reconsider the model proposed by Envia and Kerschen
[19] and include both the e!ect of "nite chord blades and the blade coupling. The
results given below are an exact analytical solution to the cascade problem and
include all the features of the model given by Koch [4] for the two-dimensional
case.

This study considers blades which have "nite chord and are subject to either an
incoming vortical or acoustic disturbance as shown in Figure 1. In section 2, we
will set up the basic equations for this #ow and specify the boundary conditions
which must be satis"ed. In section 3, the solution to these equations will be given in
terms of the pressure distribution on the blade surfaces. The analysis is based on the
Wiener Hopf method and is laid out in Appendix A. In section 4, we will consider
the unsteady blade loading as a function of reduced frequency, spanwise
wavenumber and blade sweep angle. In section 5, expressions will be given for the
sound power for each radiating mode and results will be shown which demonstrate
the e!ect of blade sweep on the acoustic radiation.
Figure 1. A linear cascade of blades in a uniform #ow (a) side view showing an incident velocity
perturbation given by w. (b) three dimensional view showing spanwise mean #ow velocity = and
blade wakes.
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2. THE EQUATIONS OF MOTION AND BOUNDARY CONDITIONS FOR
A WAVE INCIDENT ON A CASCADE

Consider a linear cascade of fan blades in a uniform subsonic #ow, as illustrated
in Figure 1. It will be assumed that there is either a vortical or acoustic wave
incident on the cascade which causes a velocity perturbation w to the mean #ow.
The cascade consists of a set of in"nitely thin #at plates of chord c which have
a stagger angle s. The cascade is de"ned in three dimensions (x, y, z) with mean #ow
parallel to the blade surfaces with velocity components (;, O,= ). The #ow normal
to the blade surfaces will be zero and so the incident velocity perturbation w will
induce a scattered "eld which must satisfy the linear equations of #uid motion. If
the velocity perturbation of the scattered "eld is u then the boundary condition on
the surface of each blade will be (w#u) ) n"0 where n is normal to the surface. In
addition, the blade will shed vorticity into its wake which is convected downstream
by the steady #ow. The wake cannot support a discontinuity in pressure and this
imposes a Kutta condition at the trailing edge of each blade.

It is convenient to solve this problem using the velocity potential for the scattered
"eld which is de"ned by +/"u. The momentum equation then relates the pressure
and the velocity potential as p

s
"!o

0
D//Dt and the continuity equation becomes
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D2/
Dt2

!+/"0. (1)

We will seek a solution to this equation using integral transforms which will require
taking an integral of all the terms in equation (1). However, there is a fundamental
di$culty in this approach because the velocity "eld, and hence /, has discontinuity
across each blade and its wake. Consequently, the derivatives of / are not
integrable functions. To correctly allow for this we specify the jump in the potential
across the blades and the wakes as D/

n
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that
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where the "rst term on the left accounts for the discontinuity in velocity potential
across the blades and the wakes, and the second term allows for a discontinuity in
the velocity normal to the blades and the wakes. Because the incident gust is
continuous everywhere and the blades are in"nitesimally thin, the boundary
condition on the surface of the blades ensures that there is no jump in the #ow
velocity normal to the blade. However, this would not be the case if the blades had
"nite thickness. Furthermore, the wake cannot be a source of mass injection and so
the velocity normal to the wake surface must be continuous across the wake. These
conditions assure that the last term in equation (2) is zero.
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The incident gust is assumed to be a harmonic wave with an upwash velocity
"eld given by

w ) n"w
0
e~*u{t`*c0x`*ay`*vz. (3)

If follows that the scattered "eld will also have a time dependence of exp(!iu@t)
and that the upwash encountered on each blade and wake will be shifted in phase
by p"c

0
d#ah (see Figure 1). This phase shift is one of the controlling features of

the cascade response and is referred to as the interblade phase angle. The gust
described by equation (3) is perfectly general and can be used to represent a vortical
gust which is convected downstream or an acoustic wave propagating either
upstream or downstream.

Since each blade encounters an upwash with the same amplitude, it follows that
the response of each blade will have the same magnitude relative to the leading
edge, but will be shifted in phase by the interblade phase angle. Consequently, we
can write

D/
n
(x, z, t)"D/

0
(x!nd)e~*u{t`*np`*vz, (4)

where D/
0
(x)"0, x(0. Substituting this into equation (2) we obtain
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A solution to this equation can be obtained using the method of integral
transforms. First, we note that since the blades have in"nite span the scattered "eld
will be harmonic in time and can be de"ned as

/(x, t)"/(x, y)e~*u{t`*vz. (6)

Then we de"ne the Fourier integral transform and its inverse in the (x, y) plane as
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Applying this transform to equation (5) gives
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where D(c) is the Fourier transform of D/
0
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At this point we will specify u"u@!l=, then taking the inverse of equation (8)
gives

/(x, y)"
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!ikD(c)
(u#c;)2/c2

0
!c2!k2!l2G+

n

e*n(p`cd`kh)He~*cx~*kydcdk.

(10)

Note how the velocity potential of the scattered "eld is speci"ed by the function
D which is the Fourier transform of the discontinuity across the blades and
the wakes. To obtain D, equation (10) must be combined with the boundary
conditions to give an integral equation which can be solved by using the Wiener
Hopf method.

The integral over k in equation (10) can be carried out using the residue theorem
by requiring that the wave "eld decays at large distances from the blade where it
originates. This moves the poles of the integrand in the complex k plane either
below or above the real axis and the integral is calculated from the residue at the
poles to give
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where Im(f)'0. This result will be used to match the boundary conditions on the
surface of the blade which is speci"ed in terms of the velocity normal to the surface
as
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where we have taken y"0` and de"ned
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The right-hand side of equation (12) is in the form of an inverse Fourier transform
which may be written as a convolution integral in the form
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where K (x) is given by the inverse Fourier transform of equation (13). To obtain the
solution for D/

0
or D we will solve equation (14) subject to the boundary

conditions of
(1) zero normal velocity to the blade surface,

L/(x, 0)/Ly#w
0
e*c0x"0, 0(x(c; (15)

(2) zero pressure jump across the blade wake,

D(D/
0
(x)e~*u{t`*lz)
Dt

"0, x'c; (16)

(3) no discontinuities upstream of the leading edge,

D/
0
(x)"0, x(0. (17)

The problem is completely speci"ed by equation (12)}(17) and various methods are
available for solving these equations. In the next section, we will show how this may
be achieved using the Wiener Hopf method.

3. SOLUTION TO THE INTEGRAL EQUATION

3.1. SPECIFICATION OF THE BOUNDARY VALUE PROBLEM

The Wiener Hopf method may be used to solve integral equations of the type
given by equation (14) subject to the boundary conditions given by equations (15)
and (17) in the limit that c tends to in"nity. However, in the case of interest here the
boundary conditions are speci"ed over a "nite chord and so a modi"ed method is
required to obtain a solution. To achieve this, we solve the problem in four parts by
de"ning the unknown D/

0
or D as the sum of four di!erent solutions:
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To obtain the complete solution we "rst obtain a solution to equation (19) subject
to the boundary conditions

f (1)(x)"
L/
Ly

"!w
0
e*c0x, x'0; D/(1)

0
(x)"0, x(0. (20)

The solution for i"1 therefore ensures that the velocity normal to the blade and its
wake is zero. To satisfy the Kutta condition given by equation (16), we solve
equation (19) with i"2, subject to the boundary conditions
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However the solution for D/(2)
0

does not satisfy the boundary condition given by
equation (17) and so we must introduce two additional solutions which are coupled
and satisfy equation (19) with the boundary conditions
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The boundary value problems de"ned by equations (20)}(23) are all de"ned on
a semi-in"nite part of the x-axis, and so are suitable for solution using the Wiener
Hopf method. At the same time the sum of the solutions satisfy the boundary
conditions given by equations (15)}(17). Consequently, the cascade response can be
obtained from four boundary value problems de"ned on semi-in"nite parts of the
x-axis, for which there is a known method of solution. Each of these boundary
value problems is solved in Appendix A giving the complete solution for D (c).

3.2. THE DISCONTINUITY OF VELOCITY POTENTIAL

Adding the solutions for each of the boundary value problems de"ned above
gives the Fourier transform of the discontinuity in velocity potential as
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The result is the sum of the three terms in M N and each of these has a speci"c
physical interpretation. The "rst term is the response of a set of semi-in"nite chord
blades to an incident gust. The second term is the correction required to allow the
wake to satisfy the Kutta condition and the third term ensures that there are no
discontinuities introduced upstream of the leading edge of the blade. The
coe$cients A

n
and C

n
represent the contributions from the "rst and second order

wake corrections de"ned by the boundary value problems given by equations (21)
and (23) respectively. The functions J

`
(c) and J

~
(c) are de"ned by equation (A.18)

and are generated from the splitting of the function j (c) which is required for the
application of the Wiener Hopf method. The function J

`
(c) has no singularities or

zeros in the upper half of the complex c plane, but in the lower half plane J
`
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n
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(see equation (A.15)) and an in"nite number of simple
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n

(see equation (A.17)). Similarly, J
~

(c) has no singularities or
zeros in the lower half of the complex c plane, but in the upper half plane J
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"iM#0
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and an in"nite number of simple poles at

c"iM#g`
n

. The coe$cients A
n
, B

n
, C

n
are de"ned in equations (A.26), (A.50) and

(A.47) respectively.
Each term in equation (24) has singularities in the complex plane but the sum of

all the terms ensures that D (c) is analytic everywhere in the complex plane apart
from at c"!u/; (see sections A.3 and A.4). This provides some insight into the
e!ects which contribute to the discontinuity in potential and the pressure
discontinuity on the blade surfaces. To obtain D/(x) we evaluate the inverse
Fourier transform of equation (24) de"ned as

D/(x)"P
=~*q1

~=~*q1
D (c)e!icxdc . (25)

This integral may be evaluated by using the residue theorem and closing the
contour in either the upper or the lower part of the complex plane. The choice of
contour depends on the convergence of the integrand at large c and this can be
considered in three separate regions. First when x(0 the contour must be closed
in the upper half plane where D (c) has no singularities and so the value of the
integral is zero. Second, in the region x'c the contour must be closed in the lower
half plane where D(c) has a single pole at c"!u/; which occurs in the second
term of equation (24). This singularity gives a solution for the integral which has
a wave convected at the mean #ow speed in the wake and represents a vortical
disturbance which is required to satisfy the Kutta condition. However, this
discontinuity in potential does not cause any pressure discontinuity across the
wake and so does not radiate any acoustic waves. Finally, we must consider the
value of the integral when 0(x(c which gives the potential discontinuity on the
surface of the blade. The term J

`
and J

~
have algebraic growth at large values of

c and so the choice of contour will depend on the arguments of the exponential in
the integrand when equation (24) is inserted in equation (25). The "rst and the last
terms of equation (24) will cause a dependence of the form exp(!icx) and so the
contour should be closed in the lower half plane for these terms. In contrast, the
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second term in equation (24) has a dependence of exp(!ic(x!c)) and so these
terms must be evaluated using a contour in the upper half plane when x(c. The
important point here is that the cancellation of the singularities which applies when
all the terms of equation (24) are added together, no longer occurs, and so the poles
of each individual term in both the upper and lower half plane will contribute to the
integral. The complete solution is then given as
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4. THE UNSTEADY LOADING

4.1. THE UNSTEADY LOADING AND NUMERICAL ACCURACY

The results given in the previous section also allow the unsteady loading on the
blade to be evaluated. The unsteady loading is de"ned as the integral of the
unsteady pressure over the blade surface is customarily non-dimensionalized as the
coe$cient C

p
"¸/no

0
;

0
w

0
c where ¸ is the unsteady loading per unit span and

;
0
"(;2#=2)1@2. To obtain this we evaluate
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and by comparison with equation (9) we obtain

C
p
"

2iuD(0)
;

0
w

0
c

, (28)

where D (0) can be obtained from equation (24), and */(0)"0. (This follows from
asymptotic evaluation of equation (24) when c&R).

To verify that the approach described here agrees with calculations using other
methods, a series of tests have been carried out and the results compared with
published computations. For example, Atassi [7] gives calculations which show the
unsteady loading as a function of c

0
c for an incoming two-dimensional vortical

wave (c
0
"u/;) with no cross-#ow (="0) with a"c

0
, M"0)3, s"403 and

s/c"0)6. The results obtained using the method described here are shown in
Figure 2 and are in agreement with Atassi's calculations over the frequency range
0(c

0
c(20. To eiminate any numerical singularities in the evaluation of equation

(24), D(0) in equation (28) is replaced by D (ie) with e"10~3. The series calculations
for J

$
(c) are evaluated using 1000 terms and the matrices needed for the

calculation of the leading and trailing edge corrections (see section A4) include at
least three non-propagating modes and a minimum of seven modes in total.



Figure 2. Example of the unsteady lift response of a #at-plate cascade for the case given by Atassi
[7].
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Additional tests using the Smith code [6, 20] have shown that numerical agreement
is obtained up to the third decimal place for typical calculations.

4.2. CHARACTERISTICS OF THE UNSTEADY LIFT RESPONSE FUNCTION

The unsteady loading is obtained from equations (28) and (24) as
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The "rst term in M N represents the contribution from the blades in the absence of
the trailing edge. It is the result which would be obtained from blades with
semi-in"nite chord. The second term represents the correction for the trailing edge.
The last term represents the correction to ensure the boundary conditions are
satis"ed upstream of the leading edge after the trailing edge correction is applied.
Therefore, it represents an additional leading edge contribution which is
a consequence of waves generated at the trailing edge travelling upstream and being
scattered at the leading edge.
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To illustrate the general features of this function, Figure 3 shows the magnitude
of the unsteady lift as a function of the non-dimensional wavenumber for a case
similar to that given by Atassi [7] (M"0)3, s"403, s/c"0)6) but with a constant
interblade phase angle of p"3n/4. The results identify two important regions
where the unsteady lift has an increased magnitude. At uc/2;"4 there is a large
peak and at uc/2;"7 there is a minimum. It will be shown in the next section that
the acoustic modes which propagate away from the cascade cut on when i

e
"$f

m
in equation (A.17). The minimum in the blade response occurs exactly at the cut on
frequency.

The high levels in the blade response at uc/2;+12 are associated with the high
order modes in the blade passages. The chordwise wavenumber for these modes is
given by

d
n
"iM!Si2

e
!A

(n!1)n
bh B

2
, e

m
"iM#Si2

e
!A

(m!1)n
bh B

2
,

i"u/c
0
b2, b2"1!M2, i2

e
"i2!(l/b )2 (30)

and so the "rst higher order blade passage mode (n, m"2) cuts on when
i
e
"$n/bh which corresponds to uc/2;"10)86.
It is interesting to consider the unsteady lift response if only the "rst order terms

of equation (29) are included, as was done in reference [10]. This can lead to
signi"cant errors in the estimation of the blade response function, especially around
the cut-on frequencies of the modes. To illustrate this, Figure 4 compares
calculations obtained using only the semi-in"nite blade and the "rst order trailing
Figure 3. Example of the unsteady lift repsonse of a #at plate cascade.



Figure 4. Comparison between the complete and approximate solutions:*, approximate solution
using leading and travelling-edge terms only; , complete solution.
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edge correction (given by the terms A
n
) with the complete response (given by

equation (29)). Above the acoustic mode cut on frequency the two methods give
very similar results, but below the cut on there are large di!erences. The wave "eld
which is trapped in the blade passages is therefore very important to the overall
response of the system at low frequencies.

The results given above are for a two-dimensional cascade but can easily be
extended to include the e!ect of a spanwise gust. To illustrate the e!ect of the
spanwise wavenumber, Figure 5 shows the unsteady lift at a "xed non-dimensional
frequency uc/2;"10 as a function of lc. The e!ect of the spanwise wavenumber is
to reduce the value of i

e
"(i2!l2/b2)1@2 while i and c

0
remain constant. In this

example the acoustic mode is cut on when the spanwise wavenumber is zero.
However as the spanwise wavenumber is increased there is a corresponding
reduction in i

e
and when i

e
(f

m
the acoustic mode is cut o!. The acoustic mode

cuts o! for all spanwise wave numbers in excess of lc"b (i2!f 2
m

)1@2c which in this
example is 3)82. At the cut on frequency there is a minimum in the unsteady lift
followed by a rapid rise and a peak. This characteristic is the same as expected at
frequencies just below cut on for the two-dimensional case shown in Figure 3,
indicating that the primary e!ect of the spanwise wavenumber is to cause mode to
cut o! and this is associated with a peak in the unsteady lift.

4.3. THE EFFECT OF BLADE SWEEP

One of the advantages of this approach is that the e!ect of blade sweep can be
introduced directly. To achieve this the leading edges of the blades are rotated so



Figure 5. Example of the unsteady lift response of a #at-plate cascade as a function of spanwise
wavenumber.
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they make an angle u with the #ow (see Figure 6). The leading edge of the blades
will then be located at

x"nd
0
cosu, y"nh,

where u is the angle of sweep (see Figure 6). If the mean #ow speed is ;
0

then the
e!ect of sweep is to reduce the in#ow velocity in the direction of the blade chord
such that ;";

0
cos(u), and cause a spanwise #ow =";

0
sin(u). For an

incoming vortical gust the incoming wavenumbers in the chordwise and the
spanwise direction will also be changed so that c

0
"(u@/;

0
) cos (u) and

l"(u@/;
0
) sin(u). If d

0
is independent of sweep this translation causes the blade

spacing in the chordwise direction to be reduced to d"d
0
cosu and this has the

e!ect of reducing the interblade phase angle to p"(u@d/;
0
) cos2(u)#ah and the

in#ow angle to s"tan~1(d
0
cos(u)/h). Also, in deriving equation (10) an e!ective

frequency was introduced which was de"ned as u"u@!l="u@ cos2(u). The
e!ect of sweep is therefore to reduce the e!ective in#ow velocity, interblade phase
angle and to introduce a spanwise wavenumber.

Figure 7 shows the unsteady lift as a function of sweep angle for the same
conditions which were used in the examples given above with d

0
constant. The

result are very similar to the results for a spanwise gust indicating that the e!ect of
sweep on the spanwise wavenumber of the gust dominates the response rather than
changes in the e!ective #ow speed or interblade phase angle. The acoustic mode
cuts o! when the sweep angle is &11)53 and at higher angles of sweep the unsteady
lift shows a large peak as expected just below the cut-o! frequency. In conclusion
the primary e!ect of sweeping the blades is to cut o! the acoustic modes generated
by the cascade because of the increased spanwise wavenumber component.



Figure 6. The rotated co-ordinates for a swept blade row.

Figure 7. The e!ect of blade sweep on the unsteady lift response of a #at-plate cascade
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5. THE ACOUSTIC MODES

5.1. THE ACOUSTIC FIELD

The acoustic radiation from the cascade can be obtained from the evaluation of
the integral given in equation (11). The integrand includes a summation which may
be evaluated in the same manner as was used for the evaluation of equation (13) (see
section A.2) and gives, for 0(y(h,

/(x, y)"
!1
2 P

=

~=

D(c)G
e*(fh~cd)y@h

1!e*fh~*cd~*p
#

e~*(fh`cd)y@h
1!e~*fh~*cd~*pH e~*c(x~yd@h)dc. (31)
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To make use of the residue theorem the integral is completed on a contour at
in"nity and providing that y(h the exponential terms in M N will tend to zero on
this contour. The contour should be closed in the lower half plane when
x!yd/h'0 which is downstream of the blades, and in the upper half plane when
x!yd/h(0 which is upstream of the blades. We have already shown that the
function D(c) has an isolated singularity in the complex plane at c"c

0
. It is

relatively easy to show that this results in a convected (non-propagating) wave
which decays exponentially with distance from each blade wake. The only
contributions to the acoustic "eld will come from the singularities of the terms in
M N. The integrand has a branch cut along f"0, but since it is an even function of f,
the contribution from the branch cut will be zero. There are however contributions
from the singularities which occur when fh$(cd#p)"$2nn. These singularities
occur at the same locations as the singularities for the function j(c). Using equation
(A.17) and evaluating the residue at the poles of the integrand then gives

/(x, y)"n
=
+

m/~=

f$

m
D (j$

m
)G

e*(p~2nm)y@h

g$

m
hb2$f$

m
dHe~*j$m (x~yd@h),

j$

m
"iM#g$

m
, f$

m
"b (i2

e
!(g$

m
)2)1@2, (32)

where the upper sign is used in the upstream direction and the lower sign is used in
the downstream direction, and g$

m
is de"ned in equation (A.17).

This result enables us to identify how the amplitude of each propagating mode
depends on the function D(c). In the region upstream of the cascade this function is
evaluated at the locations in the upper half plane where j (c) and hence J

~
(c) has

singularities. Consideration of equation (24) shows that, at these locations, the
trailing edge correction term is identically zero and so for upstream radiation we
need only consider

D (j`
m

)"
!iw

0
(2n)2(j`

m
#c

0
)J

`
(j`

m
)J

~
(!c

0
)
!G

=
+
n/0

B
n

(j`
m
!e

n
)C

J
`

(e
n
)

J
`

(j`
m

)DH . (33)

Similarly in the region downstream of the cascade only the trailing edge terms are
non-zero, hence for downstream radiation we need only consider

D(j~
m

)"!G
=
+
n/0

(A
n
#C

n
)e*(j~

m~dn)c
i(u#j~

m
; ) (j~

m
!d

n
) C

J
~

(d
n
)

J
~

(j~
m

)DH . (34)

This shows how the upstream radiation is determined by the leading-edge
contributions while the downstream radiation is determined by the trailing-edge
corrections. This split will be discussed in more detail in the next section.

5.2. THE SOUND POWER OUTPUT

The sound power output of the cascade is obtained by integrating the acoustic
intensity of the "eld over a surface which encloses all the sources. In the model



BLADE ROW RESPONSE 45
de"ned in section 2, the blades have in"nite span and the cascade has an in"nite
number of blades. This represents a circular fan with a "nite number of blades
B and span b. To allow for the periodicity of the actual fan the incoming
disturbance and the radiated "eld will repeat after B blade gaps and the surface
enclosing the sources should be drawn as illustrated in Figure 8. The sound power
= is then obtained from the integral

="P
S

I ' n dS, (35)

where n is the outward drawn normal to the surface and the acoustic intensity is
de"ned for harmonic sources [13] as

I"
1
2

ReGA
p
o
0

#U ' uB (o
0
u#o@U)*H . (36)

This may be written in terms of the velocity potential by using p"!o
0
D//Dt and

o@"p/c2
0

so that

I"
!o

0
2

ReG
L/
Lt A+/!

U
c2
0

D/
Dt B

*
H . (37)

To evaluate the sound power the acoustic intensity must be evaluated on the
surface shown in Figure 8. This includes the upper and lower surfaces A

`
and A

~
but since the cascade is an upwrapped version of a fan with B blades the "eld will be
identical on these two surfaces and so they will not contribute to the sound power.
Similarly for the surfaces which enclose the sources in the spanwise direction;
equation (37) shows that the acoustic intensity is independent of spanwise location
and so the contribution of the spanwise end caps will be zero. The sound power can
then be de"ned in terms of the integrals over the upstream or downstream surfaces
Figure 8. The surfaces enclosing the blades which are used for the evaluation of the sound power.
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S
`

or S
~

. The contribution from each is de"ned as the upstream or downstream
sound power, respectively, and can be evaluated by considering the acoustic
intensity upstream or downstream of the cascade. This is obtained by using
equation (32) which gives

I"
u@o

0
n2

2
Re +

m,n
G

f$

m
D(j$

m
)

g$

m
hb2$f$

m
dHG

f$

n
D (j$

n
)

g$

n
hb2$f$

n
dH

*

][j$

n
x;!(j$

n
d#p!2nn)y; /h!lz;!U(u#;j$

n
)/c2

0
]*

]e2n*(n~m)y@h~*(j$m ~j$n ) (x~yd@h). (38)

The surfaces S
`

and S
~

are de"ned along lines where x!yd/h"const and y lies in
the range 0(y(Bh. The surface integral therefore ensures that only those terms
for which m"n yield non-zero values of sound power and so all the cross-terms in
equation (38) are eliminated. The normal to the surface is de"ned as
n"$(!h/s, d/s, 0), where s"(d2#h2)1@2 is the blade spacing. We then obtain the
upstream or downstream sound power as

=
$
"

u@o
0
Bbn2

2
Re+

m

Df$

m
D(j$

m
) D2

f$

m
d$g$

m
hb2

. (39)

The denominator in this equation can be simpli"ed by making use of the de"nitions
given in equation (A.17) giving a preferable form of this result as

=
$
"

u@o
0
Bbn2

2bse
Re+

m

Df$

m
D(j$

m
) D2

Ji2
e
!f 2

m

,

s
e
"Jd2#(hb )2 , f

m
"(p#iMd!2nm)/s

e
. (40)

This result shows that sound power is only generated when the modes are cut on
(i

e
'f

m
) and is inversely proportional to the blade spacing. At the cut-on frequency

(i
e
"f

m
) there is a singularity but consideration of D(j$

m
) shows that the sound

power goes zero at cut-on. This is apparent because D (j$

m
) is inversely proportional

to J
$

(j$

m
) and the limiting behavior of J

$
(j$

m
) close to the cut-on frequency of the

mth mode is determined by the product terms in the denominator of equation
(A.18) for which

A1!
g$

m
gG

m
B
~1

"

GgG

m
2 cos s

e
(i2

e
!f 2

m
)1@2

.

Using this relationship in the expression for the sound power, equation (40), shows
that the sound power tends to zero at cut on in proportion to (i2

e
!f 2

m
)1@2. To avoid

numerical singularities a small imaginary part eiM is added to (i2
e
!f 2

m
)1@2 in the

de"nition of j$

m
and in the denominator of equation (40).
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5.3. THE CHARACTERISTICS OF THE MODAL SOUND POWER

Figure 9 shows the downstream sound power (normalized by o
0
w2

0
;

0
Bbs/2) for

each propagating mode as a function of frequency for the same parameters as used
in the previous examples (M"0)3, s"403, s/c"0)6, p"3n/4). The "rst mode
(m"0) cuts on at a frequency of uc/2;"7)62. At frequencies just above the cut on
there is a large peak in the sound power output followed by a decay to zero at the
frequency where f

m
"0. Physically, this corresponds to the wavenumber for which

the mode propagates downstream in the direction of the #ow, in line with the
blade chord. The acoustic dipoles on the blade surface generate no power in
this direction. At higher frequencies, the sound power increases again for the
"rst mode and it is the dominant contributor at frequencies where uc/2;+25.
The second mode (M"1) cuts on at uc/2;"8)5 but does not radiate strongly
until uc/2;"12)5. In contrast with the "rst mode, there is no zero power
propagation direction at the lower frequencies because the propagation angle is
downwards (p!2nm(0) and so is never aligned with the #ow direction (see
Figure 1).

To illustrate the importance of the coupling between the leading and trailing
edges, Figure 10 shows the comparisons between the exact power output for the
"rst mode and the approximate solution obtained by using the "rst order
trailing-edge solution only, speci"ed by putting C

n
"0 in equation (34). The

approximate solution overpredicts the power output close to the cut-on frequency
(see Figure 10) and at high frequencies the exact solution includes an oscillation
which is not present in the approximate solution. A similar feature is also found for
Figure 9. Sound power output for each mode in the downstream direction.



Figure 10. Comparison of approximate (*) and exact solution ( ) for the sound power output in
the downstream direction for the "rst mode.
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the second mode (Figure 11), especially in the oscillatory region of the curve, and it
can be concluded that there is signi"cant interaction between the leading and
trailing edges caused by blade passage modes. This has the largest e!ect on the
sound power output when the power is a maximum. Interestingly, the approxi-
mation works well when the power output is a minimum.

To illustrate the e!ect of a three-dimensional gust, Figure 12 shows the sound
power of each mode at the frequency uc/2;"15 as a function of the spanwise
wavenumber. Comparison with Figure 9 shows that at this frequency the second
mode dominates. As the spanwise wavenumber is increased the value of i

e
is

reduced and this e!ectively reduces the propagation wavenumber in the direction
of the #ow. The features of the curves in Figure 12 are therefore similar to the
features of the curves in Figure 9, but in reverse, up to the cut-o! frequency where
i
e
"(i2!(l/b)2)1@2"D f

m
D. Notice how the radiated power level is transferred from

one mode to another as the "rst mode cuts o!.
One of the interesting features of this result is the fact that the "rst mode cuts o!

at a lower spanwise wavenumber than the second mode, whereas at zero spanwise
wavenumber the "rst mode cuts on at a lower frequency. The cut-on characteristics
can be understood more easily by considering the wavenumbers which determine
the cut-on characteristics. Figure 13 shows the variation of D f

m
c D and i

e
c as

a function of uc/2; for the parameters used in this example. The modes are cut on
when i

e
"(i2!(l/b)2)1@2'D f

m
D , and so the cut-on frequencies can be determined

from this graph by the intersections of the curves marked f
m

with the curves marked
i for zero spanwise wavenumber and i

e
for the spanwise wavenumber of lc"8.



Figure 11. Comparison of approximate (*) and exact solution ( ) for the sound power output in
the downstream direction for the second mode.

Figure 12. Sound power output in the downstream direction for the "rst ( ) and second (*)
mode as a function of spanwise wavenumber for a non-dimensional frequency of uc/2;"15.
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The cut-on frequency for the "rst mode (m"0) occurs at a lower frequency than for
the second and third modes (m"1, 2) for the zero spanwise wavenumber, but for
lc"8 the second mode cuts on before the "rst mode. The curve for i

e
moves to the

right for increased values of lc and this explains why the "rst mode cuts o! before
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the second mode Figure 12. This characteristics is a feature of modes with "nite
spanwise wavenumber and is not apparent from a two-dimentional model. The
cross-over point of the curves for D f

0
D and D f

1
D is determined by their values at zero

frequency and the dependence of f
m

on iMd. At zero frequency f
m

depends on the
interblade phase angle (see equation (40)). In the example shown in Figure 13,
p"3n/4, and when p&0 the cross-over point moves to higher frequency.
However when p&n the second mode (m"1) always cuts on at a lower frequency
than the "rst mode (m"0) providing that the Mach number is not zero.

To investigate the e!ect of blade sweep the same approach is used as in section
4.3 by allowing the cross-#ow velocity to be non-zero while reducing the in#ow
velocity so that ;

0
"(;2#=2)1@2 remains constant. The e!ect of increasing the

sweep angle is shown in Figure 14 for the high-frequency case uc/2;"15. As with
the unsteady loading it is seen that the e!ect of sweep is essentially the same as the
e!ect of increasing the spanwise wavenumber. The primary advantage of using
blade sweep is to cause the propagating modes to become cut o!. In this case, 153 of
sweep is su$cient to achieve cut o! for both modes. A simple expression can be
derived for the sweep angle required to achieve cut o! for a particular mode, u

m
,

which is given as

tanu
m
"

M
b

J1!f 2
m

/i2. (41)

Consequently, large amounts of sweep are required to achieve cut o! for high Mach
number #ows, but the sweep angle required to achieve cut o! of all the modes is not
excessive. Also note that the trace velocity of the gust in the spanwise direction is
;

T
"; cotu and so for a mode to propagate we require;

T
"; cotu'; cotu

m
"

bc
0
/(1!f 2

m
/i2)1@2'bc

0
. Consequently, the trace velocity of the gust in the
Figure 13. The wavenumbers which determine the cut on frequencies, normalized by blade chord
for the parameters de"ned in the text and a spanwise wavenumber lc"8.



Figure 14. Sound power output in the downstream direction for the "rst and second modes as
a function of sweep angle for a non-dimensional frequency of uc/2;"15.
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spanwise direction across the leading edge of the blade should be supersonic for
mode propagation to occur.

The analysis presented here only applies to subsonic #ows for which ;(c
0

which ensures that b2'0. For supersonic #ows the analysis given in Appendix A
needs to be signi"cantly modi"ed. However, an interesting case occurs when the
blade is swept in a supersonic #ow such that ;

0
'c

0
but ;(c

0
so the analysis

given here still applies.
The analysis given above for blade sweep does not include the e!ect of the

spanwise wavenumber or blade lean. However, the results of this study show that
the primary e!ect of sweep is to introduce a spanwise wavenumber which causes
the propagating modes to be cut o!. Similar e!ects can be expected when the gust is
skewed or blade lean is introduced and dispersion curves, such as those given in
Figure 13, can be developed for these more complicated cases to identify the
frequency ranges where the modes are cut o!.

6. CONCLUSIONS

A method has been developed to compute the response of a cascade to
a three-dimensional incoming acoustic or vortical wave. The method is based on
the Wiener Hopf method but is not limited to low or high frequencies. However, the
calculation of the function J

$
which require the evaluation of an in"nite series is

time-consuming at high frequencies. Peake [10, 11] has suggested several methods
for speeding up these calculations but these methods have not been used here.

An expression is given for the unsteady blade loading and this is found to be
a strong function of the spanwise wavenumber and/or blade sweep. These
parameters reduce the e!ective frequency of the gust causing the loading response
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to be very similar to a lower frequency gust with the same interblade phase angle.
Sweep also reduces the #ow velocity normal to the leading edge of the blade but this
appears to be of secondary importance. It was also found that the unsteady loading
at low frequencies is very dependent on the coupling between the leading and
trailing edges of the blades and if all the terms required for the complete solution
are not included then signi"cant errors occur.

Expressions are also given for the power output of each acoustic mode. This can
be described by a leading edge contribution upstream of the blade row and
a trailing edge contribution downstream of the blade row. However, the interaction
of the leading and trailing edges can never be ignored because the errors in this
approximation are worst when the power output is a maximum.

The primary e!ect of blade sweep on the radiated sound power is to cause the
propagating acoustic modes to become cut o!. The amount of sweep required to
achieve cut o! of all modes is proportional to the #ow Mach number and requires
the trace velocity of the gust along the blade leading edge to be subsonic. Since the
primary e!ect of sweep is to alter the spanwise phasing of the gust, its e!ect on
blade row design can be evaluated relatively easily.
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APPENDIX A: THE WIENER HOPF ANALYSIS

This Appendix describes the solution to the problem de"ned in section 3.1. The
solution is in four parts as de"ned in equation (18).

A.1. THE CASCADE WITH SEMI-INFINITE CHORD

First we will solve the problem speci"ed by the boundary condition given by
equation (20) which is equivalent to considering the response of a cascade with
blades which extend to in"nity in the downstream direction. To obtain the solution
we "rst take the Fourier transform of equation (19) which can be written as

F (1)
~

(c)#F (1)
`

(c)"2nD(1)(c)j (c), (A.1)

where we have de"ned of the left-hand side using the Fourier transforms

F (1)
`

(c)"
1
2n P

=

0

f (1)(x)e*cxdx, F (1)
~

(c)"
1
2n P

0

~=

f (1) (x)e*cxdx, (A.2)

so that the boundary condition (20) can be used to specify F (1)
`

but both D(1) and
F (1) are unknowns. To obtain a solution for D(1) from equation (A.1) we need to
eliminate F (1)

~
, and to achieve this we will make use of the properties of

equation (A.2) in the complex c plane. We must be careful in this regard because the
integrals de"ning the Fourier transforms may not converge for all values of c. For
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example, if f (1) (x) has exponential decay given by exp(!q
1
x) as x tends to large

positive values, then the integral for F (1)
`

converges when Im(c)'!q
1
. This

implies that F (1)
`

is analytic in this region, which corresponds to the upper part of
the complex plane. Similarly if f (1)(x) has exponential decay given by exp(q

0
x) as

x tends to large negative values, then the integral for F (1)
~

converges in the lower half
plane where Im(c)(q

0
. Equation (A.1) is only valid in the region where the

Fourier transforms given by equation (A.2) converge which is de"ned by the strip

!q
1
(Im(c)(q

0
.

This is referred to as the strip of analyticity. This is also important when we
consider the right-hand side of equation (A.1) because the Fourier transform of the
kernel function given by j is de"ned using the in"nite series in equation (13) and this
does not converge whenever p#cd$fh"2nm, where m is an integer. We need to
specify a strip of analyticity for this function and to achieve this we allow the
frequency u to have a small positive imaginary part. From the de"nition of f given
by equation (11), we see that the solutions to p#cd$fh"2nm will not lie on the
real axis when u is imaginary and so we obtain a small but "nite strip of analyticity
where equation (A.1) is valid. Strictly the boundaries for the strip de"ned by the
function j must exceed the limits set by the functions F

`
and F

~
. Morse and

Feshbach [21, p. 964]. The implications of these conditions is that the solution for
D which is obtained using equation (A.1) will only be analytic in the region where
Im(c)'!q

1
and so the inversion integral for the transform given by equation (9)

will be

*/(1)(x)"P
=~*q1

~=~*q1
D(1)(c)e~*cxdc. (A.3)

To solve equation (A.1) we make use of the fact that F (1)
~

is only analytic in the
lower half plane, while D(1) and F (1)

`
are only analytic in the upper half plane. The

objective is to split the equation into those parts which are analytic in di!erent
regions to establish two equations for the two unknowns D(1) and F (1)

~
. To achieve

this we factorize the function j as j"J#J
~

, where the subscripts # or
! represent functions which are regular (i.e., have no poles or zeros) in the upper
or lower half planes respectively. We then divide through by J

~
so that

F (1)
`

(c)
J
~

(c)
#

F (1)
~

(c)
J
~

(c)
"2nD(1)(c)J

`
( c) .

Since both F (1)
`

and J
~

are known we split F (1)
`

/J
~

as

F (1)
`

(c)/J
~

(c)"q
`

(c)#q
~
(c) (A.4)

so that

q
~

(c)#F (1)
~

(c)/J
~

(c)"2nD(1)(c)J
`

(c)!q
`

(c). (A.5)
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The right-hand side of this equation is analytic in the upper half plane while the
left-hand side is analytic in the lower half plane. A consequence of this is that each
side of the equation must be equal to an entire function which has no poles in either
the upper or the lower half planes and has no in#uence on the resulting Fourier
transforms. This may be taken as equal to zero and so each side of equation (A.5)
can be solved independently, giving

D(1)(c)"
q
`

(c)
2nJ

`
(c)

. (A.6)

The solution therefore depends on "nding q
`

and J
`

. First consider q
`

for the case
given by the boundary condition (19). If c

0
has a small imaginary part such that

Im(c
0
)!q

1
'0, we can "nd F (1)

`
by evaluation the integral

F (1)
`

(c)"
!1
2n P

=

0

w
0
e*(c`c0)xdx"

w
0

2ni (c#c
0
)
. (A.7)

The assumption that c
0

has a small imaginary part is required to ensure that the
integrand in equation (A.7) tends to zero at large values of x. This implies that the
amplitude of the incoming wave tends to zero at large distances downstream from
the leading edge. For downstream propagating waves which decay as they
propagate this assumption is physically realistic, but for upstream propagating
waves this condition implies that they grow in amplitude as they propagate. To
circumvent this problem for upstream propagating waves we allow c

0
to have

a small negative imaginary part but specify the strip of analyticity to lie above the
real axis so !q

1
!Im(c

0
)'0.

To carry out the splitting of the functions required in equation (A.4) we use
equation (A.7) to de"ne

F (1)
`

(c)
J
~

(c)
"

w
0

2ni(c
0
#c)J

~
(c)

and split this into two functions as

q
`

(c)"
w

0
2ni(c

0
#c)J

~
(!c

0
)
, q

~
(c)"

w
0

2ni (c
0
#c)C

1
J
~

(c)
!

1
J
~

(!c
0
)D .

(A.8)

Hence the pole at c"!c
0

is eliminated for q
~

and is the only singularity
associated with q

`
. The consequence of this choice is that we can evaluate D(1) as

D(1)(c)"
!iw

0
(2n)2(c#c

0
)J

`
(c)J

~
(!c

0
)

(A.9)
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and then evaluate the solution of D/(1)(x) by inverse transformation as

D/(1)(x)"
!iw

0
(2n)2 P

=~*q1

~=~*q1

e~*cx
(c#c

0
)J

`
(c)J

~
(!c

0
)
dc . (A.10)

We have therefore obtained a complete solution for the discontinuity in potential
for a cascade with semi-in"nite chord blades. The main di$culty in "nding the
solution to this equation is in the kernel function so that we can specify the
component J

~
, and this will be dealt with in the next section. However, "rst note

some of the properties of the result given by equation (A.10). The integral can be
evaluated by a contour integration in the complex plane. The integrand is a regular
function in the upper half plane and so the value of the integral is zero for x(0.
For x'0 the integral is evaluated in the lower half plane where there is a pole at
c"!c

0
and this corresponds to a wave which propagates along the surface with

the incoming wave. In addition, the integrand will have poles at the zeroes of J
`

and contributions from branch lines drawn about the branch points of J
`

. To
explore the consequence of these zeros and branch lines we need to evaluate the
functions J

$
, and this will be carried out in the next section.

A.2. THE SPLITTING OF THE KERNEL FUNCTION

The kernel function is de"ned in equation (13) by an in"nite series and may be
summed by using the result that

=
+
n/0

zn"
1

1!z
, Dz D(1.

The condition that Dz D(1 is satis"ed when Im($p$cd#fh)'0 which will be
the case in the strip of analyticity and so we may write

j(c)"
if
4n

=
+

n/~=

e*cnd`*fDnh D`*np

"

if
4nG

=
+
n/0

e~*cnd`*fnh~*np#
=
+
n/0

e*cnd`*fnh`*np!1H
"

if
4nG

1
1!e~*cd`*fh~*p

#

1
1!e*cd`*fh`*p

!1H . (A.11)

If we introduce the new variables

M";/c
0
, b2"1!M2, i"u/c

0
b2, i2

e
"i2!(l/b)2,

m"c!iM, o"p#iMd, (A.12)
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we can write equation (A.11) as

j (c)"
f
4nG

sin(fh)
cos(fh)!cos(md#o)H , f"bJi2

e
!m2 . (A.13)

To obtain the split function J$(c), we "rst consider the function f sin fh, which can
be expanded as an in"nite product (see Morse and Feshbach [21 (p. 385)]. The
expansion is

f sin fh"i
e
b sin(i

e
hb )

=
<
m/0

(1!m/h
m
) (1!m/0

m
) , (A.14)

where

h
m
"!Ji2

e
!(mn/bh)2, 0

m
"Ji2

e
!(mn/bh)2 (A.15)

are the zeros of the function. The "rst term in the in"nite product has zeros in the
lower half plane and the second term has zeros in the upper half plane.

The denominator of j may be expanded in a similar fashion giving

cos (fh)!cos(md#o)"[cos (i
e
hb)!cos (o)]

=
<

m/~=

(1!m/g`
m

) (1!m/g~
m

)eCm ,

(A.16)

where C is a constant which will be eliminated later and g$

m
are the zeros of the

function de"ned as

g$

m
"!f

m
sin s

e
$cos s

e
Ji2

e
!f 2

m
, f

m
"

p#iMd!2nm

Jd2#(hb)2
(A.17)

and tan s
e
"d/hb.

These expansions clearly de"ne the zeros and poles of the function j and so to
obtain the factorization we can separate out two sets of functions which only have
zeros or poles in either the upper or the lower half planes. This gives the
factorization as

J
`

(c)"
i
e
b sin(i

e
hb)

4n(cos(i
e
hb)!cos(o))

<=
m/0

(1!m/h
m
)

<=
m/~=

(1!m/g~
m
)
eU,

J
~

(c)"
<=

m/0
(1!m/0

m
)

<=
m~=

(1!m/g`
m

)
e~U. (A.18)
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The function U must be chosen so that both J
`

and J
~

have algebraic growth as m tends to
in"nity and is given by

U"

!im
n

Mhb log(2 cos s
e
)#s

e
dN. (A.19)

A.3. THE FIRST ORDER CORRECTION FOR THE EFFECT OF FINITE CHORD

In section A.1 we obtained a solution for the cascade with in"nite chord. We now
make a "rst order correction to this solution to account for the "nite chord of the
blade by applying the boundary conditions speci"ed in equation (16) and obtaining
a solution to equation (19) with i"2. We follow the same procedure as in section
A.1 starting with the Fourier transform of equation (19) which in this case can be
written as

F (2)
`

(c)"2n[D(2)
~

(c)#D(2)
`

(c)] j (c) , (A.20)

where we have used the Fourier transforms

F (2)
`

(c)"
1
2n P

=

c

f (2) (x)e*cxdx, D (2)
`

(c)"
1
2n P

=

c

D/(2)
0

(x)e*cxdx,

D (2)
~

(c)"
1
2n P

c

~=

D/(2)
0

(x)e*cxdx. (A.21)

The unknowns in this problem are F (2)
`

and D(2)
~

and we can specify D (2)
`

using the
boundary condition given by equation (21). Using the properties of Fourier
transforms this gives

!i(u#c;)D (2)
`

(c)e~*u{t`*lz"
!1
2n P

=

c

D
Dt

(D/(1)
0

(x)e~*u{t`*lz)e*cx dx.

(A.22)

The integral can be evaluated by substituting from the inversion integral equation
(A.10) to give

!i(u#c;)D (2)
`

(c)"
!1
2n P

=

c

!iw
0

(2n)2 P
=~*q1

~=~*q1

!i (u#c
1
;)e~*(c1~c)x

(c
1
#c

0
)J

`
(c

1
)J

~
(!c

0
)
dc

1
dx.

(A.23)
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In the strip of analyticity we require that Im(c)'!q
1

and so Im(c!c
1
)'

Im(c!q
1
)'0 and we can carry out the integral over x to obtain

!i (u#c;)D (2)
`

(c)"
w
0

(2n)3P
=~*q1

~=~*q1

(u#c
1
;)e~*(c1~c)c

i (c
1
!c)(c

1
#c

0
)J

`
(c

1
)J

~
(!c

0
)
dc

1
.

(A.24)

This integral may be evaluated by using a contour in the lower half plane which
encloses the poles at c

1
"!c

0
and at the zeros of J

`
. We can write the solution in

the form

!i (u#c;)D (2)
`

(c)"+
n

A
n
e*(c~dn)c

c!d
n

, (A.25)

where A
n

are the residues of the poles which lie at d
n
and can be calculated as

A
0
"

w
0
(u!c

0
;)

(2n)2j(!c
0
)
, d

0
"!c

0
,

A
n
"

w
0
(u#d

n
;)

(2n)2(d
n
#c

0
)J@̀ (d

n
)J

~
(!c

0
)
, d

n
"iM#h

n~1
, n'0, (A.26)

with h
n

de"ned by equation (A.15). To obtain J@̀ we note that

C
LJ

`
Lc D

c/dn
"C

L( j/J
~

)
Lc D

c/dn
"C

j@
J@
!

jJ@
~

J2
~
D
c/dn

"

j@ (d
n
)

J
~

(d
n
)
,

where j@ is relatively easy to evaluate as

j@ (d
n
)"

(iM!d
n
)hb2

4n(1!cos(d
n
d#p)cos((n!1)n)) G

2, n"1,
1, n'1,

(A.27)

We next substitute equation (A.25) into equation (A.20) and split the function j so
that

!i (u#c;)F (2)
`

(c)
2nJ

`
(c)

"G
=
+
n/0

A
n
e*(c~dn)c

c!d
n
HJ

~
(c)!i (u#c;)D (2)

~
(c)J

~
(c) .

(A.28)

We can then rearrange this equation to ensure that the left-hand side is analytic in
the upper half plane while the right-hand side is analytic in the lower half plane.



60 S. A. L. GLEGG
This is achieved by eliminating the poles from the terms in brackets to give

!i (u#c;)F (2)
`

(c)
2nJ

`
(c)

!G
=
+
n/0

A
n
e*(c~dn)cJ

~
(d

n
)

c!d
n

H
"G

=
+
n/0

A
n
e*(c~dn)c (J

~
(c)!J

~
(d

n
))

c!d
n

H!i (u#c;)D (2)
~

(c)J
~

(c) . (A.29)

We then obtain an expression for the unknown quantities and can de"ne

D (2)
~

(c)"G
=
+
n/0

A
n
e*(c~dn)c (1!J

~
(d

n
)/J

~
(c))

i (u#c;)(c!d
n
) H . (A.30)

Combining this with equation (A.25) we "nd a solution for D (2) which is valid in the
strip of analyticity and is given by

D (2) (c)"G!
=
+
n/0

A
n
e*(c~dn)c

i (u#c;)(c!d
n
) C

J
~

(d
n
)

J
~

(c) DH . (A.31)

This gives the "rst order correction for the e!ect of the trailing edge on the cascade
response and should be added to the result given by equation (A.9) for the cascade
with semi-in"nite blade chord. However, the inverse transform of this function
should be evaluated from the two separate parts de"ned for positive and negative
values of x.

These results have some important features which are worthy of discussion and
provide some insight into the mechanisms associated with this solution. First we
note that the coe$cient of the n"0 term in this series given by equation (A.26) will
be zero for a two-dimensional vortical incident gust for which c

0
"u/;. If this

were not the case then D(2) would have a pole of second order at c"u/;. Next
consider the sum of D(1) and D(2) which gives the combined solution. We note that
the solution for D(1) given by equation (A.9) has poles at c"!c

0
and the zeros of

J
`

which correspond to the points c"d
n
. The residue at these poles is

iw
0

(2n)2j (!c
0
)

and
iw

0
(2n)2(d

n
#c

0
)J@̀ (d

n
)J

~
(!c

0
)

and is exactly cancelled by the residues at the same poles in the series de"ning D(2).
The only singularities of the sum D(1)#D(2) occur at c"!u/; and at the zeros of
J
~

in the upper half plane. The pole at c"!u/; represents a convected wave
which causes a discontinuity in velocity extending downstream in the wake, but this
pole does not induce any pressure discontinuity, and it can be shown that it cannot
be responsible for radiating any sound. The poles at the zeros of J

~
on the other

hand are spurious since they only occur in D (2)
~

and so are associated with the
discontinuity of potential which the solution has induced upstream of the leading
edge of the blade. We must therefore introduce additional corrections speci"ed by
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the boundary conditions given in equations (22) and (23) to obtain an accurate
solution, and this will be the purpose of the next section.

A.4. SECOND ORDER CORRECTIONS FOR THE EFFECTS OF THE LEADING AND TRAILING

EDGES

To obtain the second order corrections for the cascade response function, we will
"rst solve the problem speci"ed by the boundary conditions in equation (22) and
then consider the problem speci"ed in equation (23). Since these problems are
coupled we will not be able to "nd the complete solution of each independently, and
so the solution to the "rst will not be complete until we have solved the second.
First, we specify the Fourier transform of equation (19) which can be written as

F (3)
~

(c)"2n[D (3)
~

(c)#D (3)
`

(c)]j (c), (A.32)

where we have de"ned D (3)
$

on the right-hand side using the Fourier transforms

D (3)
`

(c)"
1
2n P

=

0

D/(3)
0

(x)e*cxdx, D (3)
~

(c)"
1
2n P

0

~=

D/(3)
0

(x)e*cxdx. (A.33)

The boundary condition (22) can be used to specify D (3)
~

and, as was done in section
A.3, we make use of the inversion integral and the residue theorem to obtain
a result. However, note that the upper limit of integration for D (3)

~
in equation (A.33)

is zero and can be replaced by !e in the limit that e is small and positive. Then we
obtain

D (3)
~

(c)"
!1
2n P

~e

~=
P

=`*q0

~=`*q0
[D (2)

~
(c

1
)#D (4)

~
(c

1
)]e~* (c1~c)xdc

1
dx . (A.34)

In the strip of analyticity we require the Im(c)(q
0

and so we can carry out the
integral over x to obtain

D (3)
~

(c)"
1
2n P

=`*q0

~=`*q0

[D (2)
~

(c
1
)#D (4)

~
(c

1
)]

i(c
1
!c)

e*(c1~c)edc
1
. (A.35)

This integral may be evaluated by closing the contour in the upper half of the
complex plane and the result will be given by the sum of the residues of the
integrand which lie within this contour. Since we have yet to evaluate D(4), we
cannot evaluate the integral at this stage but if it is assumed that the integrand only
has simple poles in the upper half plane then we can specify the form of the solution
as

D (3)
~

(c)"!+
m

B
m

(c!e
m
)
, (A.36)
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where B
m

is the residue of the poles of the functions in [ ] as de"ned in equation
(A.35), and e

m
are the location of the poles in the complex plane. Placing this result

in equation (A.32) and splitting the equation so that the right-hand side is analytic
in the lower half plane and the right-hand side is analytic in the upper half plane
gives

F (3)
~

(c)
2nJ

~
(c)

#+
m

B
m
J
`

(e
m
)

c!e
m

"+
m

B
m
(J
`

(e
m
)!J

`
(c))

c!e
m

#D (3)
`

(c)J
`

(c) . (A.37)

We then obtain a solution for D (3)
`

as

D (3)
`

(c)"!+
m

B
m

(c!e
m
) C

J
`

(e
m
)

J
`

(c)
!1D . (A.38)

The solution is not complete until the last part of the problem is solved. This is
given by the solution to equation (19) subject to the boundary conditions given by
equation (23). Note that the speci"cation of this problem is identical to the
speci"cation of the trailing-edge correction given by equation (21), and this is
expected since the purpose of this correction is to ensure that the solution given
above does not cause a pressure discontinuity downstream of the trailing edge. To
obtain the solution for the boundary conditions given by equation (23), we specify
the Fourier transform of equation (19) in exactly the same form as equation (A.20)
with the superscript (2) changed to (4) and use the transforms de"ned by equation
(A.21). We then evaluate the value of D (4)

`
using the integral of the form given in

equation (A.22) with the superscript (1) changed to (3) and then evaluate this
integral as in equation (A.23) to obtain

!i(u#c;)D (4)
`

(c)"
1
2n P

=

c
P

=~*q1

~=~*q1
i (u#c

1
; )D (3)

`
(c

1
)e~*(c1~c)xdc

1
dx.

(A.39)

Evaluating the integral over x and substituting equation (A.38) then gives

!i (u#c;)D (4)
`

(c)"
!1
2n P

=~*q1

~=~*q1
+
m

(u#c
1
;)B

m
(c

1
!c) (c

1
!e

m
) C

J
`

(e
m
)

J
`

(c
1
)
!1De~*(c1~c)cdc

1
.

(A.40)

This integral may be evaluated by using a contour in the lower half plane which
encloses all the poles in the integrand. These poles occur at the zeros of J

`
and this

leads to the solution for D (4)
`

which is in the same form as equation (A.25) and is
given by

!i (u#c;)D (4)
`

(c)"
=
+
n/0

C
n
e*(c~dn)c

c!d
n

, (A.41)
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where the coe$cients C
n
are given by

C
0
"0, C

n
"+

m

i(u#d
n
;)

(e
m
!d

n
) C

J
`

(e
m
)

J@̀ (d
n
)DB

m
, n'0. (A.42)

Finally, we obtain the solution for D (4)
~

in the same form as equation (A.30):

D (4)
~

(c)"G
=
+
n/0

C
n
e*(c~dn)c (1!J

~
(d

n
)/J

~
(c))

i (u#c;)(c!d
n
) H . (A.43)

Combining this with equation (A.41) we "nd a solution for D(4) which is valid in the
strip of analyticity and is given by

D(4)(c)"G
=
+
n/0

iC
n
e*(c~dn)cJ

~
(d

n
)

(u#c;)(c!d
n
)J

~
(c)H . (A.44)

However, we still need to de"ne the coe$cients B
m

which are the residues of the
poles of the function D (2)

~
#D (4)

~
in the upper half plane. Using equations (A.30) and

(A.43) we obtain

D (2)
~

(c)#D (4)
~

(c)"G
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n
)e*(c~dn)c (1!J

~
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n
)/J

~
(c))

i(u#c;) (c!d
n
) H , (A.45)

which has simple poles at the zeros of J
~

, which proves our earlier assumption and
allows us to de"ne

B
m
"!

=
+
n/0

(A
n
#C

n
)e*(e

m
~dn)c

i (u#e
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;)(e

m
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J
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)
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(e
m
)D , (A.46)

where e
m

are the zeros of J
~

which may be obtained from equation (A.15) since
e
m
"iM#0

m~1
(m'0). We now have a pair of equations which relate the

coe$cients B
m

and C
m
. Unfortunately, these are de"ned in terms of in"nite series

and so cannot be solved exactly. However, if the series are truncated after a "nite
number of terms then solutions can be obtained. To this end we write the truncated
series in matrix form as

[F
mn

]MMA
n
N#MC

n
NN#A

0
G

m
"MB

m
N, [L

mn
]MB

n
N"MC

m
N, n, m'0,

(A.47)
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where the coe$cients are de"ned as
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(A.48)
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)D . (A.49)

we obtain

MB
m
N"[[1]![F

mn
][L

mn
]]~1MMF

mn
NMA

n
N#A

0
G

m
N (A.50)

and we have the complete solution for all the coe$cients.
Adding together all the solutions we obtain the Fourier transform of the

discontinuity in velocity potential as
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